Burgers equation and Fourier Fractal Decimation

Bangalore, ICTS 24 October 2014

Michele Buzzicotti, (PhD)

Università degli Studi di Roma Tor Vergata Via della Ricerca Scientifica, 1 - 00133 ROMA

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Established by the European Commission

Outifine:

1) Why are Navier-Stokes equations interesting for Theoretical Physics?

- Strongly non perturbative field Theory (Classical)
- Anomalous Scaling (Non-Gaussian Statistics)

2) Why do we need a model for Navier-Stokes?

3) Burgers' equation and Fourier Fractal Decimation

Probabilistic description for fully developed Turbulence

Navier-Stokes, (N-S), equations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\quad \frac{\partial \mathbf{v}(\mathbf{x}, t)}{\partial t}+\mathbf{v}(\mathbf{x}, t) \cdot \nabla_{x} \mathbf{v}(\mathbf{x}, t)=-\nabla_{x} p(\mathbf{x}, t)+\nu \Delta_{x} \mathbf{v}(\mathbf{x}, \mathbf{t})+\mathbf{f}(\mathbf{x}, t) \\
\quad \nabla_{x} \cdot \mathbf{v}(\mathbf{x}, t)=0
\end{array}\right. \\
& \left\{\begin{array}{l}
\hat{t}=t / t_{0} \\
\hat{x}=x / l_{0} \\
\hat{v}=v / v_{0}
\end{array}\right.
\end{aligned}
$$

Z-invariance is broken, discrete time invariance

At high Re symmetries are spontaneously broken

Restored symmetries;
(in a statistical sense)

$R e$
Recirculating standing eddies

Kàrmàn street

Flow becomes chaotic in its time-dependence

Homogeneous-isotropic $\sim 10^{3} \quad$ fully developed turbulence

Anomalous Exponents, Small-scales Intermittency

H1) Restored symmetries (in a statistical sense).

H2) Self-similarity at small scales.

$$
\begin{aligned}
S_{p}(r) & =<\left(\delta_{r} v\right)^{p}>\sim r^{\zeta(p)} \\
\delta_{r} v & =v(x+r)-v(x)
\end{aligned}
$$

..a model for Turbulence

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}
$$

Burgers' equation

$\boldsymbol{u}(\boldsymbol{t}, \boldsymbol{x})$: velocity field, depending on a variable of time (t), and on a variable of space $(\boldsymbol{x}) \mid \boldsymbol{v}$: kinematic viscosity

Burgers produces a singularity, (shock).

Lagrangian observation

$\left\{\begin{array}{l}u(t, X(t, a))=u_{0}(a) \\ X(t, a)=a+t u_{0}(a)\end{array} ; J(t, a)=\frac{\partial X}{\partial a}=1+t u_{0}^{\prime}(a) ; t^{*}=\frac{1}{-i n f_{a}\left[u_{0}^{\prime}(a)\right]}\right.$
Gradient in the Eulerian coordinates

$$
\left.\frac{\partial u}{\partial x}\right|_{x^{*}=a^{*}}=\left.\left.\frac{\partial u}{\partial a}\right|_{a^{*}} \frac{\partial a}{\partial x}\right|_{x^{*}}=u_{0}^{\prime}(a) \frac{1}{1+t u_{0}^{\prime}(a)} \rightarrow \lim _{t \rightarrow t^{*}} \frac{u_{0}^{\prime}(a)}{1+t u_{0}^{\prime}(a)}=\infty
$$

Intermittency on Burgers' equation

$$
\begin{gathered}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}+f(x, t) \\
S_{p}(r)=<\left(\delta_{r} v\right)^{p}>\sim r^{\zeta(p)}
\end{gathered}
$$

how many degrees of freedom are related to the singularity?

..Reduce to learn!

FRACTAL FOURIER DECIMATION

$$
\begin{aligned}
u(x, t) & =\sum_{k \in Z} e^{i k x} u(k, t) \quad P_{D} \cdot u(x, t)=\sum_{k \in Z} e^{i k x} \theta_{k} u(k, t) \\
\theta_{\boldsymbol{k}} & =\left\{\begin{array}{l}
1 \text { with probability } h_{k} \\
0 \text { with probability } 1-h_{k}, \quad k \equiv|\boldsymbol{k}|
\end{array}\right. \\
h_{k} & =\left(k / k_{0}\right)^{D-1}, \quad 0<D \leq 1
\end{aligned}
$$

The decimation is Random but Quenched on time, leaving on average $N(k) \sim k^{D}$ active mode Galerkin truncation projection: $k<k_{\max }$

- Finite number of d.o.f.
- Fractal dimension

Frisch, Pomyalov, Procaccia, and Ray, Turbulence in non-integer dimensions by fractal Fourier decimation. Phys. Rev. Lett. 108, (2012)

Real space velocity field evolution:

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}} \quad D i m=1
$$

Real space velocity field evolution:

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}} \quad D i m=0.99
$$

Real space velocity field evolution:

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}} \quad D i m=0.95
$$

Real space velocity field evolution:

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}} \quad D i m=0.85
$$

Decinated Energy Spectrum

$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}+f(x, t) \quad$ Mean spectra:

1) Single Mask: Averaged on time in the stationary state
2) Mean Slope (32 masks) vs Fractal Dimension

Structure Functions

$$
S_{p}(r)=<\left(\delta_{r} v\right)^{p}>\sim r^{\zeta(p)}
$$

Structure Functions: Local Slope

$$
S_{p}(r)=<\left(\delta_{r} v\right)^{p}>\sim r^{\zeta(p)}
$$

$$
\zeta(p)=\frac{\partial \log \left(S_{r}(r)\right)}{\partial \log (r)}
$$

Extended Self Sinilarity (ESS):

$S_{p}(r) v s S_{3}(r)$

$$
\zeta^{E S S}(p)=\frac{\partial \log \left(S_{p}(r)\right)}{\partial \log \left(S_{3}(r)\right)}
$$

$$
\zeta^{E S S}(p)=\frac{\zeta(p)}{\zeta(3)}
$$

PDF of velocity gradjents:

Khanin, Mazel
and Sinai, Probability Distribution Functions for the Random Forced Burgers Equation,
(1997 Phys. Rev. Lett. 78, 1904)

Non Self-Averagjing Problem

Total energy evolution: different masks

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}+f_{\text {deterministic }}(x, t)
$$

Block in the energy transfer

.solution

Total energy evolution: different masks

Conclusions:

1) Small scales structures appear in the real space velocity field when the system is evolved in a dimension less than 1
2) Differences in the statistic have been found among the different dimensions

- Structure functions
- Pdfs of Gradients

3) The system seems to be no longer intermittent with the decreasing of the dimension starting from a value close to 0.90
4) We need to understand the relation between the scaling laws of 2° order structure functions and energy spectra

Intermittecy on Burgers' equation

..BIFRACTAL MODEL

$$
\begin{aligned}
\frac{\delta v_{\ell}(r)}{v_{0}} \sim & \begin{cases}\left(\frac{\ell}{\ell_{0}}\right)^{h_{1}}, & r \in \mathscr{L}_{1}, \operatorname{dim} \mathscr{L}_{1}=D_{1} \\
\left(\frac{\ell}{\ell_{0}}\right)^{h_{2}}, & r \in \mathscr{L}_{2}, \operatorname{dim} \mathscr{L}_{2}=D_{2}\end{cases} \\
& \left\{\begin{array}{ll}
D_{1}=0 ; & \frac{\left\langle\delta v_{\ell}^{p}\right\rangle}{v_{0}^{p}} \propto\left(\frac{\ell}{\ell_{0}}\right)^{p h_{1}}\left(\frac{\ell}{\ell_{0}}\right)^{1-D_{1}}+\left(\frac{\ell}{\ell_{0}}\right)^{p h_{2}}\left(\frac{\ell}{\ell_{0}}\right)^{1-D_{2}} \\
D_{2}=1 ; & h_{2}=1
\end{array} \quad\right. \text { - solated shock }
\end{aligned}
$$

